

1000km 200G/2000km 100G Coherent CFP2-DCO Optical Transceiver Module

PRODUCT FEATURES

- Reach beyond 1000/2000 km over SMF for 200G/100G transmission
- Support PM-16QAM(200G), PM-DQPSK/PM-QPSK(100G) Modulation
- Support SD-FEC
- Support 100G/200G Flex-rate
- OTU4/OTUC2/2*100GE/100GE Signaling Supported
- Compliant CEI-28G-MR Specifications
- Compliant OTL4.4/OTLC2/CAUI-4 Signaling
- Hot-Pluggable
- CFP2 MSA Hardware Specification Rev. 1.0
- OIF-CFP2-DCO-01.0
- CFP MSA Management Interface Specification Version 2.6 (R06a)
- Line & Client PRBS Generator and Checker
- Line loopback, host terminal/facility loopback
- Power consumption 26W(200G)/21W(100G)

APPLICATIONS

The module is intended to be used on system integrators host board to support transmission over DWDM links in Metro networks. As shown in Figure 1, it is comprised of high- data lanes, a single reference clock from hosts, a single 3.3V power supply, an MDIO interface for module control and status report, and dedicated alarm and control pins.

DESCRIPTIONS

The NF2-S100-COH module uses a 104 pin CFP2 MSA connector for all electrical interfaces with the host card, whereas the optical interfaces on the line side are provided through the optical receptacles on the CFP2. The module can be portioned into three functional parts: Tx path, Rx path and Control & Power block. All control interface pins are routed to the MCU and DSP. MCU is also used for other fast controls needed inside the module such as modulator bias adjustment, software image management, overall control coordination and status reporting.

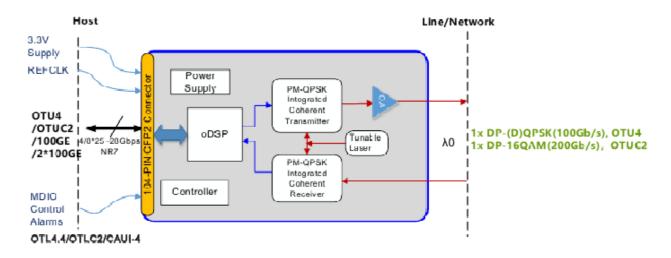


Figure 1. NF2-S100-COH Module block diagram

Host Interface Configuration

The module supports host signal types: OTUC2/ OTU4/100GE/2*100GE. Host Electrical Interface is compliant to CEI-28G-MR. The host rate is dependent on the framing type and the supported host rates are shown in the following table. Clock source is need for synchronization, Module REFCLK Input Clock = Host Baud Rate / 160.

Host Frame	Host Data Rate (Gb/s)	Signaling	Data Rate(Gb/s)	REFCLK Clock
200G OTUC2	2*112.305	OTLC2 NRZ	28.076	175.476 MHz, +/-20ppm
100G OTU4	111.81	OTL4.4 NRZ	27.952	174.703 MHz , +/-20ppm
100GE	103.125	CAUI-4 NRZ	25.78125	NA

Table 1: Host Rates

Line Framing Format

The actual line rate depends on the configured FEC mode and the host data format.

Line Data Rate	Min Grid Spacing (GHz)	Baud Rate (Gbaud)	Modulation Format	FEC OH	Rx OSNR(dB) EOL @Pre-FEC BER
200G	50	39.7	PM-16QAM	25%	17
100G	50	33.6	PM-QPSK /PM-DQPSK	25%	11.5/13

Table 2: Line Modulation formats

Configuration Overview

The table below summarizes the possible combinations of host type, Line side (Modulation) that can be configured through the MDIO interface. Refer to the NF2-S100-COH Software Interface specification for the register details needed to configure the CFP2 for the desired application.

Host Format	Host Signaling	Line side Con- figuration	FEC
OTUC2	OTLC2	PM-16QAM	SD-FEC
OTU4	OTL4.4	PM-DQPSK	SD-FEC
OTU4	OTL4.4	PM-QPSK	SD-FEC
2*OTU4	OTL4.4	PM-16QAM	SD-FEC
2*100GE	2*CAUI-4	PM-16QAM	SD-FEC
100GE	CAUI-4	PM-QPSK	SD-FEC

 Table 3: Configuration Overview Table

НПО "ТЕЛЕКОМ"

Environmental Specifications

The table below defines the environmental specifications of the NF2-S100-COH module.

Parameter	Conditions	Min	Max	Unit
Environmental Storage Temperature		-40	85	°C
Environmental Storage (relative) Humidity		-	85	%
Environmental Operat- ing (relative) Humidity			85	%
Operating Temperature	This temperature is monitored through an inter- nal thermal sensor (MDIO register B02F). The temperature reading represents the module case temperature at the specified location.	-5	70	°C
Short term operating at high temperature	The module operates up to a maximum tempera- ture for short term (96 Hours continuously, no more than15 days per year). This temperature is monitored through an internal thermal sense (MDIO register B02F). The temperature reading represents the module case temperature at the specified location.		75	Ĉ

Table 4: environmental specifications

Absolute Maximum Ratings

Operating or handling the module out of any specified absolute maximum rating is subject to permanent

damage of the module.

Parameter	Min	Max	Unit	Conditions
Operating case tem- perature	-10	80	°C	This temperature is monitored through an internal ther- mal sensor (MDIO register). Represents the module case temperature at the specified location.
Power supply	-0.3	3.7	V	
Rx input power	-	14	dBm	Same modulation format; same wavelength as Rx local oscillator; continuous or peak power

 Table 5: Absolute Maximum Operating Conditions

Electrical Characteristics

A single +3.3V power supply shall be provided by host card through the 104 pin connector, internal DC/DC power converters are used to regulate the power for different components inside the module. The +3.3V power supply provided by the host shall adhere to the specifications in table below of the CFP2 MSA Hardware Specification version1.0 available at www.cfp-msa.org.The electrical ground is isolated from the module chassis ground. The power supply requirements are specified in the table below. 1 Those power classes for which the maximum current per pin exceeds 1125mA will require agreement from an electrical connecter supplier.

Parameter	Symbol	Min	Typi- cal	Max	Unit	Note
3.3V DC Sup- ply Voltage	P3V3	3.2	3.3	3.4	v	Measured at the electrical connector
3.3V DC Sup- ply Current	P3V3_Icc1	-		9	А	Max current/pin shall not exceed 1.125A
Power Supply Noise	P3V3_noise	-		2	%p-p	DC- 500MHz
Power Supply Ripple	P3V3_ripple	-		1	%p-p	DC- 20MHz
Inrush current	P3V3_Iir			500	mA/us	
Turn-off cur- rent	P3V3_Ito	-500			mA/us	
Total capaci- tance	P3V3_Ctotal			TBD	uF	On Vcc
Power Con- sumption	Pwlp	-		2	W	Low power mode
Power Con-	Pwc4	-	26*1,*2	TBD	W	200G PM-16QAM
sumption	r wu4	-	21*2	TBD	W	100G PM-DQPSK/QPSK

*1 Power consumption depends on the actual application condition. For 200G PM-16QAM typical application, optical link should have enough OSNR margin with preBER better than 1.5e-2, power

consumption is less than 26w(with framer enabled).

*²With framer disabled, the power consumption will be reduced to 25 W for 200G or 20 W for 100G.

The NF2-S100-COH module supports alarm, control, and monitor functions over a MDIO bus. This interface

consists of eight pins listed in the table below.

Signal	I/O	Logic	Description
MDC	Ι	1.2V LVCMOS	Management data clock, 4 MHz max
MDIO	I/O	1.2V LVCMOS	Management data input output, 4 Mb/s max
PRTADR[2:0]	Ι	1.2V LVCMOS	Physical port address
GLB_ALRMN	0	3.3V LVCMOS	Global alarm, active low, indicates FAWS condition.

	Table	7:	MDIO	Pins
--	-------	----	-------------	------

There are six control pins as listed in the following table to support real -time control via hardware pins.

Signal	I/O	Logic	Description
MOD_RSTN	Ι	3.3V LVCMOS	Module reset, active L, internal PD
TX_DIS	Ι	3.3V LVCMOS	Transmitter disable, active H, internal PU
MOD_LOPWR	Ι	3.3V LVCMOS	Module low power, active H, internal PU
PRG_CNTL[2:1]	Ι	3.3V LVCMOS	Programmable control [2:1], internal PU

Table 8: Host – Control Pins

The PRG_CNTRL[2:1] signals have MSA defined default meanings that are listed in the CFP MSA

implementation agreement. The lower two bits (hardware interlock) define the power class of the module and must be kept static during initialization. When MOD_LOPWR is active, the maximum power consumption is <2W and the host can still communicate to the module via the MDIO interface.

The MOD_RSTN signal is run to a reset chip to generate a reset to internal MCU and oDSP ASIC (RST_N). There are five alarm pins from the module back to the host.

Signal	I/O	Logic	Description
RX_LOS	0	3.3V LVCMOS	Receiver loss of signal, active H
MOD_ABS	0	3.3V LVCMOS	Module absent, active H, internal PD
PRG_ALRM[2:1]	0	3.3V LVCMOS	Programmable alarm [2:1]

All but MOD_ABS interface to the DSP ASIC. The PRG_ALRM[2:1] signals have MSA defined

default meanings that are listed in the CFP2 implementation agreement.

The transmitter and receiver comply with the CEI-28G-MR electrical specification. The data lines are

AC- coupled and terminated in the module per the following figure from the CFP2 MSA. The

termination also ap- plies to the reference clock, TX monitor clock, and RX monitor clock.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Signaling rate per lane	TBaud	25.78		28.3	Gbps	CEI-28G-MR
Differential voltage pk-pk	TVdiff	800		1200	mVpp	
Differential Output Imped- ance	TRD	80	100	120	Ω	
Common mode noise(rms)	Vrms	/	/	/	mV	AC-coupled
Transition time	Trise/Tfall		TBD		ps	20%~80%
Common Return Loss	TSCC22			-6	dB	<10GHz
Common Return Loss	150022			-4	dB	10GHz~Baud Rate
Total Jitter				0.28	UIpp	

Table 10: Transmitter Electrical Output Characteristics

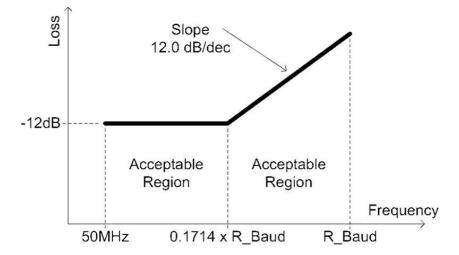


Figure 1: Transmitter Diff return Loss

Parameter	Symbol	Min	Тур	Max	Unit	Note
Signaling rate per lane	RBaud	25.78		28.3	Gbps	CEI-28G-MR
Differential voltage pk-pk	RVdiff		TBD		mVppd	Compliant to CEI-28G- MR
Common mode noise (rms)	Vrms		TBD		mV	AC coupled
Transition time	Trise/Tfall		TBD		ps	20%~80%
Differential Input Imped- ance	RRD	80	100	120	Ω	
Common Return Loss	RSCC11			-6	dB	<10GHz
Common Return Loss	RSCCII			-4	dB	10GHz~Baud Rate
Sinusoidal Jitter, Maximum	R_SJ-max			5	UIpp	
Sinusoidal Jitter, High Fre- quency	R_SJ-hi			0.05	UIpp	
Offset of Frequency				20/100	ppm	OTN/ETH

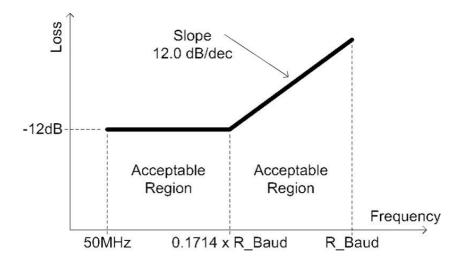


Figure 2: Receiver Diff return Loss Mask

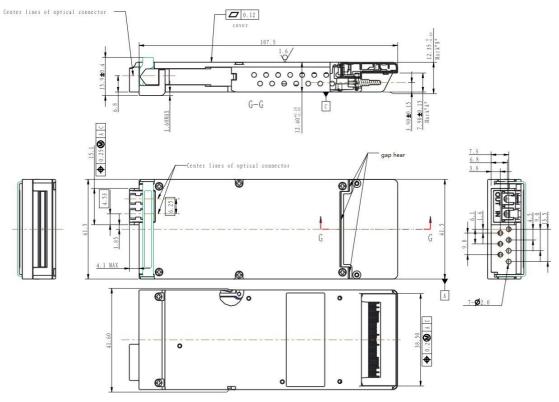
Optical Characteristics

All specifications given in this document are End -of-Life numbers and are valid over the operating temperature. Section below contains the general transmitter specifications and the general receiver.

Parameter	Min	Тур.	Max	Unit	Condition/comments
Transmitter frequency range	191.3		196.05	THz	ITU-T 50GHz grid
Transmitter laser fre- quency stability	-1.5		1.5	GHz	
Transmitter output power range	-10		1	dBm	Default 0.5dBm
Output power stability (standard range)	-0.3		0.3	dB	
Output power accuracy and stability(standard range)	-1		1	dB	
Transmitter laser disable time	-		10	ms	
Transmitter wavelength switching time	-		60	S	
Transmitter turn-up time from cold start		60	120	S	
Transmitter OSNR	35			dB/0.1nm	OSNR at Transmitter output (in- band)
Transmitter signal -to- max ASE	TBD			dB/0.1nm	Signal to the maximum out-of-band ASE level
Transmitter optical re- turn loss	24			dB	
Transmitter output power with TX disabled			-35	dBm	E.g., ma x output power when chang- ing laser frequency.
Transmitter polarization dependent power			1	dB	Power deference between X and Y polarization

 Table 12: Optical Transmitter Specifications

Table 13: Optical Receiver Specification


Parameter	Min	Тур	Max	Unit	Condition/comments
Receiver frequency range	191.3		196.05	THz	
Optimum Input power range	-14		0	dBm	Signal power of the selected channel. The input power range gets optimum OSNR performance
Extended Input power range	-18		0	dBm	@0.5dB OSNR penalty
		16.2	16.7	dB/0.1nm	200G PM-16QAM
OSNR tolerance(BOL)		10.6	11	dB/0.1nm	100G PM-QPSK
		12.3	12.8	dB/0.1nm	100G PM-DQPSK
CD tolerance	-10,000		40,000	ps /nm	200G PM-16QAM with less than 0.5dB OSNR penalty
CD tolerance	-10,000		100,000	ps /nm	100G PM-DQPSK/QPSK with less than 0.5dB OSNR penalty
PMD tolerance			25	ps	200G PM-16QAM
PMD tolerance			30	ps	100G PM-DQPSK/QPSK
PDL tolerance	6			dB	
Optical input power transient tolerance	6			dB	
Tolerance to change i n	628			rad/ms	200G PM-16QAM
SOP	1000		-	rad/ms	100G PM-DQPSK/QPSK
Dispersion reading ac- curacy	-150		150	ps /nm	
DGD reading accuracy	-10		10	ps	
Input power reading ac- curacy	-1.5		1.5	dB	within the range of 0 to -18 dBm
Input power reading ac- curacy	-2.5		2.5	dB	within the range of -18 to -25 dBm
Optical return loss	27			dB	

Mechanical Specifications

The CFP2 module is designed to be inserted into a host board with a railing system that includes a heat sink. The module is 107.5x41.5x12.4mm in size and is mechanically compliant to the requirements detailed the CFP2 HW Baseline Design Rev.1L.

Note: Please check the cage whether matches before using the module because of the side has dissipation hole structure, such as the cage part CN121C-104-0029(H1) (YAMAICHI) have side openings and the side without sharp protrusions.

Figure 3: Mechanical Dimensions

The module plug connector is a sub-component within the CFP2 module. The PCB inserts into the connector with a top and bottom row of pins (primary and secondary side PCB). The host connector has a physical offset of the pin contacts to ensure certain signals make and break contact before others. Ground mates first, the 3.3V and 3.3V ground mate second, the control and status signals mate third, and the MOD_LOPWR, MOD_ABS and high speed data signals mate last.

The module connector is a 104-pin plug connector. The connector pinout defined by the CFP2 MSA, (including debug and sub -modulation signals using VND_IO_x pins) follows. Customers must **not** connect to any of the VND_IO_x pins unless specifically allowed to do so.

GND
(TX_MCLKn) or Vendor_Out0n
(TX_MCLKp) or Vendor_Out0p
GND
Vendor_In0n
Vendor_In0p
3.3V_GND
3.3V_GND
3.3V
3.3V
3.3V
3.3V
3.3V_GND
3.3V_GND
VND_IO_A
VND_IO_B
PRG_CNTL1
PRG_CNTL2
PRG_CNTL3
PRG_ALRM1
PRG_ALRM2
PRG_ALRM3
GND
TX_DIS
RX_LOS
MOD_LOPWR
MOD_ABS

	Top (4x25G)
104	GND
103	N.C.
102	N.C.
101	GND
100	TX3n
99	ТХ3р
98	GND
97	TX2n
96	TX2p
95	GND
94	N.C.
93	N.C.
92	GND
91	N.C.
90	N.C.
89	GND
88	TX1n
87	ТХ1р
86	GND
85	TX0n
84	ТХ0р
83	GND
82	N.C.
81	N.C.
80	GND
79	(REFCLKn)
78	(REFCLKp)

	Top (8x25G)
104	GND
103	TX4n
102	ТХ4р
101	GND
100	TX3n
99	ТХ3р
98	GND
97	TX2n
96	ТХ2р
95	GND
94	TX5n
93	ТХ5р
92	GND
91	TX6n
90	ТХбр
89	GND
88	TX1n
87	TX1p
86	GND
85	TX0n
84	ТХ0р
83	GND
82	TX7n
81	ТХ7р
80	GND
79	(REFCLKn)
78	(REFCLKp)

НПО "ТЕЛЕКОМ"	,
----------------------	---

28	MOD_RSTn		
29	GLB_ALRMn		
30	GND		
31	MDC		
32	MDIO		
33	PRTADR0		
34	PRTADR1		
35	PRTADR2		
36	VND_IO_C		
37	VND_IO_D		
38	VND_IO_E		
39	3.3V_GND		
40	3.3V_GND		
41	3.3V		
42	3.3V		
43	3.3V		
44	3.3V		
45	3.3V_GND		
46	3.3V_GND		
47	Vendor_In1n		
48	Vendor_In1p		
49	GND		
50	(RX_MCLKn) or Vendor_Out1n		
51	(RX_MCLKp) or Vendor_Out1p		
52	GND		
		l	

				3
77	GND		77	GND
76	N.C.		76	RX4n
75	N.C.		75	RX4p
74	GND		74	GND
73	RX3n		73	RX3n
72	RX3p		72	RX3p
71	GND		71	GND
70	RX2n		70	RX2n
69	RX2p		69	RX2p
68	GND		68	GND
67	N.C.		67	RX5n
66	N.C.		66	RX5p
65	GND		65	GND
64	N.C.		64	RX6n
63	N.C.		63	RX6p
62	GND		62	GND
61	RX1n		61	RX1n
60	RX1p		60	RX1p
59	GND		59	GND
58	RX0n		58	RX0n
57	RX0p		57	RX0p
56	GND		56	GND
55	N.C.		55	RX7n
54	N.C.		54	RX7p
53	GND		53	GND

Note:

100G OTU4/100GE: TX (RX) 0~3 for OTL4.4/CAUI-4 Signaling.

200G OTUC2/2*100GE: TX (RX) 0~3 for one OTLC/CAUI-4 Signaling, TX (RX) 4~7

for another OTLC/CAUI-4 Signaling.

The optical port connections on the front of CFP2 are showed in Figure above, the Mechanical Dimensions. The CFP2 will support LC receptacles for standard single mode fiber. As mention in the OIF-CFP2-DCO- 01.0, the position of the optical connector in the Y and Z axes shall be specified by the CFP2-DCO module manufacturer. In

addition to the centered duplex LC connector location specified by the CFP MSA, the CFP2- DCO IA also optionally allows the optical port position on the front of the module to be either left or right- justified if needed to enable a certain vendor-specific implementation technology.

Regulatory and Reliability

Specifications Laser Safety

The module is designed to comply with Class 1 laser, according to IEC/EN 60825-1/A2: 2001, or FDA CDRH21 CFR-1040. Don't directly look into the transmitter fiber connector at any time while the module is in operation.



ESD

The module is designed to meet ESD susceptibility up to 500V according to GR-78 (Human Body Model us- ing C =100pF, R = 1.5kOhm) on the high speed pins, 2000V for all other pins. Handle only at Static Safe Work Stations.

Electromagnetic Emission

The module is designed to comply with Class B electromagnetic emission according to GR-1089-CORE Sections

Electromagnetic Immunity

The module is designed to comply with EMI 8.5V/m per GR.1089-CORE section 3.3.1.

Flammability

The module is designed to comply with GR-63 section 4.2.3 for fire resistance.

RoHS

The module complies with Directive 2002/95/EC on the restriction on the use of certain hazardous substances in electrical and electronic equipment and with exception 6a, 6c, 7b and 13a permitted by Commission Decision (2010/571/EU).

Reliability

The module is designed to comply with GR-468 for general reliability. Target FIT < 2700 at 55 degree operating case temperature.

Ordering Information

Part Number	Description
NF2-S100-COH	200G/100G, PM-16QAM /PM-DQPSK/ PM-QPSK, Coherent CFP2